This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

1

Cooperative Flow Statistics Collection with
Per-Switch Cost Constraint in SDNs

Xuwei Yang, Hongli Xu, Member, IEEE, Xiwen Yu, Chen Qian, Member, IEEE,
Gongming Zhao, Member, IEEE, He Huang, Member, IEEE,

Abstract—In a software defined network, the controller needs
to obtain/collect traffic measurement information (i.e., flow s-
tatistics) from switches for different applications, such as traffic
engineering. Existing solutions seldom consider the per-switch
cost, which may lead to heavy statistics collection cost (e.g., high
CPU overhead) on some switches. Due to limited computing
power on most commodity switches, heavy statistics collection
cost on those switches may seriously interfere with the basic
rule operations, especially when some switches need to deal
with many new-arrival flows or update routes of existing flows.
To address this challenge, we design and implement efficient
flow statistics collection (FSC) with limited interference on the
basic rule operations. We formally propose a cooperative flow
statistics collection with per-switch cost constraint (CP-FSC)
problem. We prove that the CP-FSC problem is NP-hard and
present an efficient algorithm with approximation ratio 1/2,
based on dynamic programming. To reduce the time complexity,
a greedy-based algorithm with approximation ratio 1/3 is also
presented. We implement the proposed FSC algorithms on
our SDN platform. The experimental results and the extensive
simulation results show 36%-59% performance improvement
compared with the existing solutions.

Index Terms—Flow Statistics Collection, Cost, Delay, Wildcard,
Approximation.

I. INTRODUCTION

To explore the full advantages of SDN, accurate traffic
measurement information in the data plane is essential to
various applications, such as traffic engineering [1], security
protection and attack detection [2] [3]. For example, many data
centers collect traffic statistics for dynamical flow scheduling
[4]. Accurate statistics information of flow traffic helps to
improve the routing QoS, such as low latency and low packet
loss ratio. As another example, traffic statistics information has
been widely used to detect attacks and protect the network.
Some security attacks, e.g. DDoS [2] [3], are often detected
by analyzing the changes or entropy of flow traffic. Thus, it
is of vital importance to collect accurate flow statistics from
switches.

X. Yang, H. Xu, X. Yu and G. Zhao are with the School of Computer
Science and Technology, University of Science and Technology of China,
Hefei, Anhui, China, 230027, and also with Suzhou Institute for Advanced
Study, University of Science and Technology of China, Suzhou, Jiangsu,
China, 215123. E-mail: issacyxw @mail.ustc.edu.cn, xuhongli@ustc.edu.cn,
venn@mail.ustc.edu.cn, gmzhao@ustc.edu.cn.

C. Qian is with the Department of Computer Engineering, University
of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064. E-
mail:cqian12 @ucsc.edu.

H. Huang is with the School of Computer Science and
Technology, Soochow University, Suzhou, Jiangsu, China, 215006. E-
mail:huangh @suda.edu.cn.

Most commodity SDN switches are able to measure dif-
ferent types of traffic statistics, including packets, bytes or
durations, through specifications in flow entries. To obtain
traffic statistics information, the flow statistics collection (F-
SC) problem studied here is fully different from the traditional
traffic measurement problem in SDNs [5] [6] [7] [8] [9], which
studies how switches derive flow statistics. FSC focuses on
how the controller collects the derived flow statistics from
the switches.

OpenFlow [10] specifies two different approaches for F-
SC from switches. One is the push-based mechanism. The
controller learns active flows and derives their statistics by
passively receiving reports from switches. The push-based
FSC results in low communication overhead between switches
and the controller [11]. However, several factors limit its
application in some practical scenarios. First, current com-
modity switches often do not inform the controller about the
behavior of a flow until the entry times out. Accordingly, the
push-based FSC approach can not be useful for many real-
time applications, e.g., dynamic flow scheduling [12] [13] and
event-triggered statistics collection. Second, to support push-
based FSC with smart policy, it poses some additional require-
ments on both hardware and/or software, such as counters
and comparators [12]. In fact, many commodity switches do
not equip with these hardwares to support the flexible push-
based FSC. Moreover, due to traffic dynamics, it is also a
challenging issue to set smart policies for statistics pushing.
Third, when the traffic varies dynamically, the FSC events will
be frequently triggered and a massive number of measurement
reports will be sent to the controller, causing large cost of the
switch’s CPU resource [14] [13]. The other is the pull-based
solution: the controller just sends a Read-State message
(also called FSC request) to retrieve the flow statistics from a
switch. Since this mechanism is triggered by the controller, it
does not pose additional requirements of both hardware and
software on switches, and has been widely used in various
SDN applications [13] [15] [16]. In this work, we focus on
the pull-based FSC method.

There are three strategies of pull-based flow statistics col-
lection, per-flow [15], per-switch [13] [16] [17] and wildcard-
based [8]. The difference among these schemes is the gran-
ularity of statistics collection. Specifically, the per-flow (or
per-switch) method will collect the statistics information of
one flow (or all flows through this switch) for each FSC
request. While for the wildcard-based method, the controller
collects the statistics information of a set of flows matching
with the wildcard rule in the request. In a recent work [8],
the authors have reported that the wildcard-based FSC method

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

usually could achieve lower processing latency on the switches
and cost of the control channel bandwidth than both the per-
flow and per-switch methods by combining flow statistics and
distributing the FSC requests among all switches. Thus, this
paper also focuses on the wildcard-based FSC approach.

In this paper, we study the problem of efficient flow statistics
collection, while less interfering with flow entry operations
on switches. With the development of information technology,
the network burdens with more and more flows. To give an
example, in a moderate-size data center network [18], the
volume of flows arriving at a switch will reach 75K-100K
flows/min for a rack composed of 40 servers. It would be in
the order of 1,300K if each server hosts around 15 virtual
machines. On one hand, the massive number of flows make
network links very busy. By the empirical study of the network
traffic conducted among 10 data centers, the authors in [19]
observed that about 20% of the core links were hot-spots at
least 50% of time intervals. Thus, these links are apt to be
congested without efficient route control. To provide highly
efficient route control, traffic statistics information is necessary
and instrumental. On the other hand, a great quantity of flows
make a switch’s CPU on high loads for dealing with rule
operations, such as rule setup for new-arrival flows, and rule
modification for flow rerouting. In fact, each commodity SDN
switch is usually equipped with a low-end CPU with limited
processing capacity [20] [21]. Under this situation, most of
the CPU capacity is expected to deal with the switch’s basic
rule operations. However, DevoFlow [12] has shown that the
flow statistics collection overhead will significantly interfere
with the switch’s basic operations. For example, the FSC for
4500 counters/rules per second will reduce the number of
installed rules from 275 to 150 on HP5460z] switches, which
may result in long-delay route update or blocking new-arrival
flows. Thus, it is important and challenging to achieve FSC
with less interference on basic rule operations.

To efficiently obtain the statistics information from switch-
es, the existing methods [8] [13] [16] usually target on
reducing the cost for statistics collection of all (or most)
flows in the network, without considering the per-switch cost
constraint. However, it may lead to massive cost on some
switches, which seriously interferes with basic rule operations
on these switches, thus decreasing the user experience.

Therefore, it is important to perform efficient flow statistics
collection with per-switch cost constraint, so that basic rule
operations on each switch will be less impeded. When an
FSC event is triggered (e.g., the timer is fired or some links
are congested), the controller sends FSC requests, each of
which contains one wildcard rule, to switches, while satisfying
cost constraint on each switch. Our objective is to collect the
statistics information of more flows from distributed switches
so as to draw a more accurate traffic view in the data plane.
The main contributions of this paper are as follows:

1) In order to avoid flow statistics collection interfere with
the basic rule operations of switch, we formulate the
problem of how to determine which set of wildcard re-
quest (or rules) to use for flow statistics collection at each
switch such that one can maximize the number of flows
whose statistics are collected, while ensuring the FSC
cost at each switch does not exceed its cost constraint.

2

The complexity of this problem is also analyzed.

2) We propose the cooperative flow statistics collection (CP-
FSC) with cost constraint problem, and prove its NP-
hardness. To clarify this problem, we also discuss the
difference of proposed CP-FSC from previous problems.

3) We then propose an efficient algorithm with approxima-
tion ratio 1/2 based on dynamic programming. Moreover,
a greedy-based algorithm with approximation ratio 1/3 is
also presented. We analyze the time complexity of both
algorithms.

4) We implement the proposed FSC algorithms on our SDN
platform. The extensive experiment and simulation results
show that our algorithms can collect traffic statistics of
36%-59% more flows compared with the existing per-
flow and wildcard-based solutions.

The rest of this paper is organized as follows. We introduce
the cost of FSC in Section II, formulate the CP-FSC problem,
and give the NP-hardness proof. We propose two algorithms
for CP-FSC in Section IIl. The experimental and simulation
results are reported in Section IV. We review related works in
Section V and conclude the paper in Section VI.

II. PRELIMINARIES

In this section, we first produce the network model, and the
specific process for flow statistics collection. We then analyze
the FSC cost based on the practical testing, and accordingly
give the definition of the cooperative flow statistics collection
(CP-FSC) problem.

A. Network Model

An SDN consists of a logically-centralized controller and
a set of switches, V' = {v1,...,u,}, n = |V|. The data
plane of an SDN network is composed of these switches.
Therefore, we model the network topology of the data plane
as G = (V, E), where E denotes the set of links connecting
switches. Note that in a large-scale network, the control plane
usually consists of multiple controllers [21], which is helpful
to achieve load balancing among individual controllers and
enhance the network robustness. Since we care for per-switch
FSC cost, the number of controllers will not significantly
impact the per-switch performance for FSC. Therefore, for the
sake of simplicity, we assume that the control plane consists
of only one controller.

As specified by OpenFlow 1.3 [10], a flow table consists of
a finite number of flow entries, which is also called rules,
and each flow entry consists of several fields. In the flow
table, a unique entry is together identified by the match
fields and priority. The OpenFlow switch implements traffic
measurement through the counter field. When a packet reaches
a switch, if there is one or several flow entries that match the
packet, this switch will choose the one which has the highest
priority, carry out the action specified by the instruction field
of this entry, and increase the value of the counter field
according to different traffic measurements, such as packets
or bytes. Otherwise, the switch reports the packet header to
the controller. Then, the controller computes an appropriate
route path for this flow, and setups a sequence of entries to
the switches on this path.

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

In fact, we collect the statistics information of the counter
field in the flow entries. In an SDN, each flow entry may
match one or several flows. For simplicity, we first assume
that the controller setups exact-match entries (i.e., one entry
just matches one flow) in the flow tables using the reactive
model. To be more practical, the controller may install some
wildcard entries (i.e., one entry may match more than one
flow) using the proactive model, which will be discussed in
Section III-C.

B. Specific Process for Flow Statistics Collection

We introduce the interaction between switches and the
controller. The OpenFlow standard specifies that, each SDN
switch communicates with the controller through OpenFlow
agent (OFA) implemented by software over a secure TCP con-
nection [20]. A TCP connection between OFA and controller
encrypted by TLS will be established. The OFA allows the
controller to interact with the switch to control its behavior
through the TCP connection. When a packet reaches a switch
and there is no matched flow entry, the switch will inform the
controller through this connection, which then configures the
switch’s flow table for packet forwarding.

We then introduce the specific process for FSC from switch-
es and the FSC traffic amount. An FSC event will trigger the
following actions. First, the controller sends an FSC request,
whose length is 144bytes [10], to a switch. Second, the counter
field and other fields (e.g., match fields) of all matched flow
entries are encapsulated into an FSC reply packet by the OFA.
Third, the controller receives the FSC reply packet sent by
the OFA. For simplicity, the set of matched flows (or entries)
with the FSC request is denoted as II'. The length of the
reply packet is determined by the number of flows in IT,
and is expressed as lp + [l - |II'|, where [;, stands for the
length of the packet header, and [. denotes the length for
each flow entry. As specified in [10], [, and [, are 74 bytes
and 96 bytes, respectively. We have conducted an experiment
to validate these values through our OVS platform. Therefore,
the length of a reply packet is 96 - |II'| + 74 bytes.

25 F|Maximum 25 F|Maximum

= M 5 +
B Average X [= Average X
o Minimum A [Minimum A
§ 20 [|Tendency T g % [[Tendeney 2
=) =)
o 151 o 15
5 5
-é 10 + X § 10 +
L% L%
5k 5%

PSR
0 5 10 15 20 25 30 35 40 45 50
Flow Table Size (X 10)

0 5 1‘0 1‘5 éU éS C;O C;S 4‘0 4‘5 50
Flow Table Size (X 10)

Fig. 1: Switch’s CPU Utilization vs. Number of Covered Flows (or

entries) per FSC request. Left plot: 1dle State without Traffic; right

plot: With Traffic Load 1Gbps.

C. Cost of Flow Statistics Collection

For ease of expression, we assume that all entries are exact-
matched rules. In Section III-C, we will extend our solution
to the wildcard rules. When an FSC request is sent to switch
v, we assume that the statistics information of a flow set
I’ will be collected, and denote the cost on switch v as
c(IT"). Intuitively, we expect that the flow statistics collection

3

should less interfere with the basic rule operations, or the CPU
consumption for FSC should be constrained. More specifically,
if we expect that « (e.g., 80%) CPU capacity will be reserved
to deal with the basic rule operations, the switch’s CPU
utilization for FSC should not exceed 1 — « (e.g., 20%). Note
that, the value of parameter o depends on the user’s QoS
requirement. The larger the value of parameter o« becomes,
the more rule operations per second the switch can support.
In practice, the OpenFlow standard [10] does not provide the
interface to acquire the real-time switch’s CPU utilization.
Thus, it is infeasible to measure the CPU utilization directly.
We should consider an alternative way to reflect the CPU
utilization.

Observing the process of FSC as described in Section 1I-B,
each switch’s CPU is responsible for parsing the FSC request
and encapsulating the flow statistics information. Intuitively,
encapsulating more statistics information consumes more CPU
resources, especially for low-end CPU on most commodity
switches. To validate the intuition, we test on the H3C
S5120 switch with different traffic loads. Note that, although
OpenFlow does not provide the interface for acquiring the
real-time CPU utilization, we log in the switch and use the
“display cpu-usage” command to directly acquire the switch’s
CPU utilization. The left plot of Fig. 1 indicates that the
CPU utilization increases almost linearly with the number of
collected flows under the idle state. The fitting function is
y = 0.03244z + 2.9818, where y and = denote the average
CPU utilization and the number of collected flows. When we
increase the traffic load to 1Gbps on the switch, a similar
performance is shown in the right plot of Fig. 1. That’s
because the SDN switch has special hardware for traffic
forwarding, which scarcely affects the CPU utilization for
FSC. Accordingly, the fitting function can be described as
y = 0.03249zx 4 2.7773.

This figure shows that the CPU utilization for FSC linearly
depends on the number of collected flows. As described above,
though the controller collects the statistics information of the
same number of flows, different FSC schemes will lead to
various traffic amount. Thus, to be more precise, we alterna-
tively use the FSC traffic amount, including FSC request and
encapsulated statistics information, ¢(IT') = 96-|IT'|+-218 with
unit byte as the FSC cost. We believe that this cost metric is
sufficient to reflect the CPU utilization for each FSC request.
In [8], the authors give the formal delay cost for each FSC
request based on practical testing. However, this cost metric
may rely on the performance of physical switches. On the
other hand, the cost of FSC traffic amount is independent of
different physical switches.

D. Definition of Cooperative Flow Statistics Collection (CP-
SFC)

In a typical SDN, when a new-arrival flow reaches a switch,
the switch reports the header packet of this flow (e.g., using
Packet-in messages [22]) to the controller. Therefore, it is
appropriate to suppose that the controller knows the existing
flows in a network, denoted as IT = {1, ..., v4 }, with h = |TI.
To be general, the controller may not exactly know the existing
flow set in the proactive model. We will discuss how to deal

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

with this case in Section III-C. In practice, the number of flows
through a switch may be dynamic. Since FSC is expected to be
finished usually in a fast manner (e.g., 200ms), it is reasonable
to suppose that the impact of flow dynamics on FSC can be
ignored. Since the route paths for flows are determined by the
controller with a centralized manner, we also know the flow
set, represented as II;, through each switch v;. For a flow,
the controller knows its actual number of packets (or traffic
intensity) once its traffic statistic is collected. We say that
this flow is covered. In the following case, the controller will
remove the corresponding entries on switches, and update the
flow set II. The traffic statistic of some flow does not vary, or
this flow has finished.

In this paper, we adopt the wildcard-based FSC method.
Assuming that there is a set of wildcards, denoted as R =
{r1,7r2,...;rm}, with m = |R|. To give an example, we
describe the general way to derive wildcards as follows [8]:
each wildcard r; only identifies the termination v;, and does
not care where the flow comes from. That is, it can match
every source in the network. Each wildcard can also identify
other fields in the packet header, such as protocol or source
or both. When the controller delivers an FSC request with
wildcard r; to switch v;, the switch assembles all of the
flow entries matching with this wildcard r; into a reply
packet, which will be sent to the controller. In this situation,
let the covered flow set be II]. As the example described
above, the wildcard rules for FSC usually meet the following
two characteristics: (1) Completeness, i.e., Urj cR Hg = 1II,,
Yu; € V. (2) Disjointness, Le., Hgl N ng =0, Yrj, #rj,,
Vv; € V. It is noted that because there are different flows
whose terminal is v; on different switches, the controller can
deliver FSC requests with the same wildcards r; to different
switch simultaneously.

The controller will deliver Read-State requests to different
switches when it expects to collect the statistics information.
Each Read-State request is composed of a wildcard. It should
be noted that, for an FSC event, a switch may receive more
than one request from a controller. Consequently, the total cost
(i.e., the total FSC traffic amount) on switch v; is denoted as
¢(v;). To avoid interfering with the basic functions, such as
rule setup, the FSC cost on each switch should not surpass
the threshold B; (e.g., 1Mb), which depends on different
application requirements, and will be discussed in Section
IV-B. We aim to maximize the number of covered flows in
the network, which benefits for various applications, such as
flow re-routing or traffic engineering.

One may think that the flow statistics information can be
collected only from edge switches. The authors [23] have
shown high efficiency of network-wide measurement instead
of that only on edge switches. In fact, for the statistics
collection, cooperative FSC from all switches also helps to
reduce the CPU overhead of all switches, which can support
more basic rule operations in an SDN.

Accordingly, we formulate CP-FSC as follows:

max g Zy
~yell

4
Zy < ZWGH? xg, vy ell
i) = Ie(I7) < B; .
S.t. C(_,Uz) Z"‘jG]R i C(Hl) =]Bz7 v’l)z eV (1)
:cZ e {0,1}, Vg, 1
276{0,1}, V’VGH

where z, indicates whether the statistic of flow v will be
collected or not. z] indicates whether a Read-State request
with wildcard r; will be sent from the controller to switch v;
or not. The first set of constraints decides whether the statistics
information of flow + will be collected or not. The second set
of constraints tells that each switch v; costs at most IB; to
respond to FSC requests. We aim to maximize the number of
covered flows, that is, max Zwen Zy.

Theorem 1: The CP-FSC problem is NP-hard.

Proof: We prove the NP-hardness by showing that the
single knapsack (SKP) problem [24] is a special case of CP-
FSC. We consider a network situation, in which switch v; is
in the idle state and all others are in the saturated state. As a
result, we can collect flow statistics information only from this
idle switch. For each wildcard rule r;, we regard the flow set
Hg as an item. Moreover, its weight and value are defined as
¢(IT7) and |IT |, respectively. Then, our CP-FSC problem turns
to find a set of items to maximize the total values with total
weight constraint B;. Thus, this is a typical SKP problem,
which is NP-hard [24]. Since SKP is a special case of our
problem, CP-FSC is an NP-hard problem too. |

E. Differences to Existing Problems

One may think that the CP-FSC problem is similar to the
existing problems, such as the budgeted maximum coverage
problem [25] or the maximum coverage problem with group
budget constraints [26]. Before discussing the differences
between these two problems, the definition of the budgeted
maximum coverage problem will be given first.

Definition 1: Budgeted Maximum Coverage (BMC) Prob-
lem [25]: Given a ground set X, a collection of sets § =
{51, Sa, ..., Sp}, with each set S; associated with a cost ¢(S;)
defined over a domain of weighted elements, and a cost
threshold C, the objective is to find a subset of S, denoted
as $’, which maximizes the total weights of elements covered
by § and the total cost of $’ should not exceed C.

Differences with the BMC Problem: The BMC problem
regards that all the element sets $ are put in a group, and there
is only one total cost constraint C on this group. However,
for the CP-FSC problem, each switch corresponds to a group.
Thus, there are n groups, in which each group for each switch
v; 1s associated with a cost constraint IB;.

Definition 2: Maximum Coverage with Group Budget Con-
straints (MCG) Problem [26] Given a ground set X and
subsets {S1,S5,...,S,}, each set S; is combined with a
cost/budget ¢(S;). Given sets G, Ga, ..., Gy, each G;, called
a group, is a subset of {51, .52, ...S,}. Further, there are given
an overall cost C and a cost C; for each group G;, 1 <1 <.
The objective is to find a subset H C {51, Sa, ..., Sp}, which
satisfies that the total cost of the set in H is at most C, and
the union of sets in H contains as many elements as possible.
At the same time, ensure that, for any group G, the total cost
of the sets in H N G; will not exceed C,;.

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

Differences with the MCG problem: In this case, each
group G; for switch v; can be regarded as {II},... TI"}.
There are two main differences between CP-FSC and MCG.
One is that CP-FSC has no total cost/budget constraint on
all switches, or we can say that the total cost constraint is
infinite for CP-FSC. The other is the mutual exclusion feature
of wildcard rules for CP-FSC, that is, II}' NII> = ®,Vr;, €
R,7;, € R,1 <4 < n. Thus, we can say that CP-FSC is a
special case of MCG.

The authors in [26] have designed a greedy algorithm for
the MCG problem with approximation ratio ﬁ, where
(v is the approximation ratio for a polynomial-time oracle,
with 0 < g < 1. Though we can directly apply the designed
algorithms for MCG [26] to find an approximation solution for
our CP-FSC problem, the approximation performance may not
be satisfied. In this paper, according to the special features of
the CP-FSC problem, we will design two efficient algorithms
with better approximation factors in Section III.

III. ALGORITHM DESIGN OF PROPORTIONAL FAIRNESS

Since the CP-FSC problem is NP-hard, we first propose an
approximation algorithm using dynamic programming and an-
alyze the performance of this algorithm (Section III-A). Then
we derive a greedy-based approximation algorithm which has
lower time complexity (Section III-B) compared with the DP-
based algorithm (Section I1I-B). We also give some discussion
to enhance our proposed algorithms (Section III-C).

A. A 1/2 Approximation Algorithm via Dynamic Program-
ming

1) Algorithm Description: This section introduces an ap-
proximation algorithm, called D-FSC, based on dynamic pro-
gramming (DP) to solve the CP-FSC problem. Before the
algorithm description, we consider a special case in which
there is only one switch (e.g., v;) in the network. Obviously,
this special case belongs to the 0-1 knapsack problem [24].
Specifically, the size of the knapsack (or switch v;) is its
cost constraint, i.e., IB;. For each wildcard rule r;, Hg can
be regarded as an individual object, whose cost is c(H?). The
profit of each set IT, denoted by p(II7), is the number of
uncovered flows in set IT]. It can be solved by the previous
knapsack algorithms, e.g., [27].

The D-FSC algorithm is composed of a group of iterations.
In each iteration, there are two main steps. In the first step,
we use dynamic programming for the 0-1 knapsack problem
to determine the maximum number of incrementally covered
flows for each switch (lines 6-11 in Alg.1), which will be de-
scribed in Section III-A2. We then choose the switch, denoted
by v;, with the maximum profit among all the switches. The
DP method also determines a set of wildcard rules applied
on switch v;. In the second step, the algorithm updates the
profit of each flow set IIZ. For simplicity, let 1I be the set
of covered flows. The profit of a flow set II] is updated as
p(Il7) = |11 — TI|. The algorithm will not terminate until all
switches have been checked. The D-FSC algorithm is formally
described in Alg. 1.

5

Algorithm 1 D-FSC: DP-based FSC
1: The switch set is denoted by V.
2: while |V| > 0 do
3: Step 1: Choosing a switch with the maximum profit
4: for each switch v; € V do
5: Apply the dynamic programming method to com-
pute the maximum profit p(v;) for switch v; with
cost constraint IB;:
6: Set A(1,p(I1})) = c(I1}), Vv;. Set A(1,k) = oo, Vk
when k # p(I1}).
Set p(v;) = p(I1!) and R, = {II}}
for j in 2 to |V| do
for kin 1 to |B;/c;| do

10: Compute A(j,k) according to Eq. (2) and
record related set S .

11 if £ > p(v;) and A(j, k) < B; then

12: Set p(’l)z) =kand R; = ik

13: Select switch v, with the maximum profit p(v,), and
the chosen rule set is denoted by R’ = R,

14: for Each wildcard rule r; € R’ do

15: O=TI+11]

16: V=V—-{v,}

17: Step 2: Updating the profit of each flow set

18: for each switch v; € V do

19: for each wildcard rule r; € R do

20: p(IY) = |T/ —TI]|

2) Solving 0-1 knapsack using DP: This section will de-
scribe a DP-based algorithm to compute the maximum profit
p(v;) for each switch v; with cost constraint 1B;. Besides, 2
denotes the largest profit-cost ratio among these flow sets.
It means that the achievable profit under the cost constraint
B, is no more than z - IB;. The profit-cost ratio of each
p(I1) Il
(M) = (aall+e2)/(1-a:)
So we have z < é, and z - B; < % For each wildcard
r; € Rand k € {1,...,[2z - B;]}, Sjx denotes a subset of
{11}, ..., 117}, whose total cost is minimum among all subsets
with total profit of exactly k. A(j, k) denotes the cost of set
S;k (A(J, k) = oo if no such set exists). Obviously, A(1, k)
is known for every k € {1,...,|B;/c1]|}. The following DP
expression helps to compute all values A(j, k).
min{A(j, k), c(IL] 1)
+AG k= p(I) Lt p(I) <k
A(j, k), otherwise

1—q; < 1
Cc1 - C1'

flow set Hg is

A+ 1,k) =

2
The maximum profit under the cost constraint IB; can be
expressed by max{k|A(m, k) < B;}, which is the flow sets
with the highest profit such that the total cost of them is less
than or equal to the constraint. We thus get a polynomial-time
algorithm for knapsack. The time complexity of the dynamic
programming method for 0-1 knapsack is as follows [27].
Theorem 2: The running time of the DP method is O(m -
B;/c1) or O(m - B;), where the unit of B; is byte.
One may think that the time complexity of the DP method
for 0-1 knapsack may be pseudo-polynomial due to the large
size of the knapsack [27]. We consider two cases of cost

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

constraint B;. As B; exceeds the value of - (c; + c2), where
c1 and ¢ are two constants, and A is the number of flows
in the network, all the flow sets through switch v; can be
collected. Then, the DP method just cares for the case of
B; < h-(c1+4c¢2), ie, B; = O(h). Thus, the time complexity
of DP is not pseudo-polynomial, but polynomial.

3) Performance Analysis: In the following, Q)¢ denotes the
set of covered flows by the D-FSC algorithm. In the I*” itera-
tion of D-FSC, the covered flow set is Gf, and the incremental
profit is denoted by X;. Obviously X| = w(G}\ Ui: GY).

Lemma 3: The D-FSC algorithm can achieve the approxi-
mation ratio 1/2 for the CP-FSC problem.

Proof: Let 8 be the approximation ratio of the greedy
algorithm for 0-1 knapsack. Consider an instant that the D-
FSC algorithm has executed (-1 iterations. In the [*" iteration,
the algorithm chooses the switch v;. Assume that the optimal
solution will select a flow set, denoted by Oy, from switch vy/.
If we choose O; instead of (] in this iteration, the incremental
profit becomes w(O;\ Ul ! G’) denoted by X";. Obviously,
we have X] > - X' = 3- w(ol\Uﬁ;} @) > B-w(0)\Qg).

It follows
ST Xi=Y " 8-w(00\Qq)

w(Qq) =
=8 Z ol\Qc >8-w(J 01\Qq)

=3 w(OPT\Qc) > B [w(OPT) — w(Qc)] 3)
Thus, we have 8

w(Qq) 2 45 w(OPT) 4)

Since the dynamic program method achieves the optimal
result for 0-1 knapsack [28], by Eq. (4), the D-FSC algorithm
can achieve the approximation ratio 1/2 for CP-FSC.]

Assume that the maximum cost constraint of all switches
is denoted by B, i.e., B = max{B;, 1 <i < n}. f denotes
the maximum number of switched visited by each flow.

Theorem 4: The time complexity of the D-FSC algorithm
is O(nQ-m-%+n-f~h).

Proof: Suppose that there are n switches in this network.
In each iteration, we regard every switch v; as a knapsack.
According to Theorem 2 for switch v;, the time complexity
for Lines 5-16 is O(m) where m is the number of wildcard
rules in a network. Slnce there are at most n unchecked
switches, the time complexity for the first step is O(n-m- %)
In the second step, we update the profit of each flow set, it
takes O(f - h) time, for each flow will appear at most f flow
sets, and h is the number of flows in the network. Since the
algorithm consists of at most n iterations, the time complexity
of D-FSC is O(n? -m- 2 +n- f - h). |

B. A 1/3 Approximation Algorithm for CP-FSC

Though the approximation ratio of the D-FSC algorithm is
very close to the best ratio for the CP-FSC problem, it may not
be always feasible for some real-time applications due to its
high time complexity. Thus, this section presents an efficient
algorithm with low time complexity for the CP-FSC problem.
The proposed algorithm is called G-FSC.

1) Algorithm Description: By Theorem 4, the time com-
plexity of D-FSC mainly stems from the DP method for
solving 0-1 knapsack in the first step. The authors in [28]

6

have designed a greedy method with low time complexity
for the 0-1 knapsack problem. Basically, for each switch, the
greedy method iteratively chooses the flow set (corresponding
to the wildcard rule) with the largest profit-cost ratio with a
cost constraint. Here, we omit the description of the greedy
method for 0-1 knapsack, and the readers can refer [28] for
details. We choose a switch, denoted by v;, with maximum
profit. Then, we determine the set of rules R, which will be
sent to switch v; to collect the flow statistics, and update the
covered flow set and the profit for each flow set (Line 13).
The G-FSC algorithm is described as follows.

Algorithm 2 G-FSC: Greedy FSC
1: 'V =all switches set.
2: while |[V| > 0 do
3: Step 1: Choosing a switch with maximum profit
4: Regard every switch v; as a package and compute the
profit p(v;) using greedy 0-1 knapsack
5: Select switch v; with the maximum profit
6: V=V- {UZ}
7. The chosen rule set is denoted by R’
3
9

for Each wildcard rule 7; € R’ do
: =1+ HJ
10. Step 2: Updatmg the profit of each flow set
11: for each switch v; € V do
12: for each wildcard rule r; € R do
13: p(Il) = |17 — 10|

2) Performance Analysis: In the following, () denotes the
set of covered flows by the G-FSC algorithm. In the I*” itera-
tion of G-FSC, the covered flow set is G;, and the incremental
profit is denoted by X/. Obviously X| = w(G;\Ul ! 1GY).

Lemma 5: The G- FSC algorithm can achieve the approxi-
mation ratio 1/3 for the CP-FSC problem.

Proof: Since the greedy method achieves the approxima-
tion ratio 1/2 for 0-1 knapsack [28], by Eq. (4), the G-FSC
algorithm can achieve the approximation ratio 1/3 for the CP-
FSC problem. []

Lemma 6: The time complexity of G-FSC is O(n?
mlogm+mn- f-h).

Proof: Similar to the D-FSC algorithm, there are at most
n iterations in the G-FSC algorithm, and each iteration con-
sists of two main steps. In the first step, the time complexity of
the greedy algorithm is O(m -logm) [28]. In the second step,
we update the profit of each flow set, which takes O(f - h)
time. As a result, the total time complexity of the G-FSC
algorithm is O(n? - m -logm +n- f - h). [

C. Discussion

We discuss some practical issues to make the proposed
algorithms more applicable.

First, the objective of the problem definition Eq. (1) is
to maximize the number of collected flow statistics. For
applications such as traffic engineering or security analytic,
flow statistics from specific network locations or specific flows
(e.g. identified by different protocol features) might be more
important than others. So we introduce an “importance label”
6., for flow/rule v and maximize the collection of rules under

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

consideration of their importance. The statistics of rules with
larger importance labels will be more likely to be collected
by our proposed solution. The importance of rules depends
on the application’s requirement. For example, elephant flows
are more important than mouse flows in flow rerouting, while
traffic from a specific IP may be more important than other
traffic in some attack detection applications. The importance
label can be set according to the applications’ needs. The
definition of the extended problem can be rewritten as follows.

max E 0z
yerm 7

Zy < Z’yeﬂj xga V’Y ell
) — J J))
St c(.vz) = ereR xle(Il]) < B;, Vv, €V
z; €{0,1},
2y € {07 1}7

(&)

V’Ui, 7‘]'
vy ell

We should note that the D-FSC/G-FSC algorithms can solve
Eg. (5) through some modifications. We need to redefine the
meaning of profit p(II]) of each set II] as the summation of
important label of uncovered flows in this set rather than the
number of uncovered flows in this set in Alg. 1. We also need
to adjust the update value of p(II]) in the second step of D-
FSC/G-FSC algorithms for Eq. (5). Specifically, let 11 be the
set of covered flows. The profit of a flow set II] is updated to
p(Il?) = > e\ f rather than p(Il7) = |II — 1] in Line
20 of Alg. 1 and Line 13 of Alg. 2.

In fact, after the above modification, the proposed D-
FSC/G-FSC algorithms can guarantee the same approximation
performance for Eq. (5) with the importance label 6. Specifi-
cally, the proposed D-FSC/G-FSC algorithms can be divided
into several rounds, and each round of both algorithms needs
to solve the 0-1 knapsack problem for the remaining switches.
The goal of 0-1 knapsack problem is to maximize the total
profits of selected items. In the original algorithms, the profit
of each item (flows with the same wildcard) is the number of
uncovered flows in this item when we solve the 0-1 knapsack
problem. After modification, the profit of each item is the
summation of importance label values of uncovered flows.
According to the performance analysis in Section III-A-3) and
Section III-B-2), if the approximation ratio of algorithm for
the 0-1 knapsack problem is [, the approximation ratio of
both D-FSC/G-FSC algorithms is 1/(1+ 3). We use dynamic
programming and greedy algorithm to solve the 0-1 knapsack
problem in D-FSC and G-FSC algorithms, respectively. In
fact, no matter the importance label of each flow is 1 or other
value, the approximation ratio of dynamic programming and
greedy algorithm for the 0-1 knapsack problem is 1 and 1 /
2, respectively. So after the above modification, the proposed
algorithms can guarantee the same approximation performance
(i.e., 1/2 for D-FSC and 1/3 for G-FSC) for Eq. (5).

Second, if only exact-match rules are installed at all switch-
es in the network, our proposed solution will collect the
statistics of some rules, and all the statistics collected are
from exact-match rules. Our proposed solution can also be
applied in the network where the wildcard rules are deployed,
and the statistical collected may be from the wildcard rule. In
practice, in order to schedule more flows in the network, the
wildcard rules/entries that can match arbitrary header ranges

7

are allowed to be installed at the switches. The statistics of all
flows matching this wildcard entry will be aggregated into one
value. As a result, the statistics information of each individual
flow can not be distinguished. On the premise that the original-
destination pairs are known, denoted as T in an SDN. To
deal with this, we regard all flows matching a wildcard entry
as one “flow”, which is also called macro-flow [29]. For
example, if one entry e; matches three flows {v1,72,73},
the combination of these three flows can be regarded as one
macro-flow. Our proposed algorithms can be adopted for this
case after some adjustments. However, the proposed solution
has some limitations when dealing with wildcard rules, such
as the partial overlap between “macro-flows” (i.e., covering
the same flows) and reduced monitoring granularity (and
hence reduced accuracy of per-flow statistics) when collecting
macro-flow statistics. When the wildcard rule is used, what
the proposed D-FSC/G-FSC algorithms solve in each round
is not a 0-1 knapsack problem, but a BMC problem [25]. We
can replace the dynamic programming or greedy algorithm
with an appropriate algorithm [25]. Moreover, the decline of
monitoring accuracy is inevitable, which is not addressed by
the proposed algorithms.

After FSC, we obtain the statistics of aggregated flow e;.
We can also get the statistics of individual flow ~; if there
is another entry for ;. Collecting individual flow statistics
can improve the accuracy of FSC but increase the cost, while
collecting aggregated flow statistics reduces the cost of FSC
but decreases the accuracy. We can adjust the algorithm’s
preference for accuracy by carefully setting the importance
label for each individual flow rule and wildcard rule. Recall
that the importance of rules depends on the application’s
requirement. For example, if the application just wants to
cover flows as more as possible, we can set the importance
label (or profit) of the per-flow rule to 1, and set the importance
label of the wildcard rule to the number of flows covered by
this wildcard rule. If the application has higher requirements
for the accuracy of statistical information, the importance label
of the wildcard rule can be appropriately reduced. Elephant
flows may be more important than mouse flows in some traffic
engineering applications, so we can set a larger importance
label for elephant flows than mouse flows (e.g., 5 for elephant
flows and 1 for mouse flows). Traffic from a specific [P may
be more important than other traffic in some attack detection
applications, so we can list these sensitive IP and set a larger
importance label for the matched flows (e.g., 10 for flows
matched sensitive IP and 1 otherwise). The importance label
can be set according to the applications’ needs.

Third, we discuss how to determine the cost threshold
B, for each switch v; in the practical applications. A simple
way is to estimate parameter IB; through the required CPU
capacity for basic rule operations, as illustrated in Section
II-C. More precisely, provided that the switch can support
the wildcard-based FSC, it is feasible to test the impact of
the FSC on the quantity of installed rules per second [12].
According to the requirement on the number of installed rules
per second on switches, it is feasible to determine the required
CPU utilization for rule operations. Then, we can estimate the
rough value of parameter B; by Fig. 1.

Fourth, we discuss delay-constraint FSC in an SDN. In

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

some practical applications, it is also required that the flow
statistics collection should be completed within a given delay.
For example, for many flow schedulers such as Hedera [30],
the control loop needs less than 500ms for better network
performance. Thus, the delay for FSC should be less than
200ms, so that there remains enough time for flow scheduling
and re-routing [12]. However, even the FSC delay increases
almost linearly with the number of covered flows in the ideal
state [8], the delay will dynamically change with CPU load.
Since it is difficult to predict the real-time CPU utilization,
the FSC delay will be dynamically changed. To deal with this,
after we run the D-FSC or G-FSC algorithms, the controller
will determine a set of wildcard rules, denoted by R;, for
switch v;. We randomly choose a wildcard, denoted by r;, and
send a request with wildcard r; to the switch. The controller
repeats these operations until the delay threshold expires. In
this situation, the number of collected flows may be reduced
under FSC delay constraint, which will be validated in Section
IV-B.

Fifth, the FSC request can also match multiple fields.
We discuss how matching multiple fields that may affect
the performance of the system. An FSC request identified
multiple wildcard fields will collect fewer flow statistics
compared with single wildcard field. So the controller will
send more FSC requests. Specifically, assuming that each FSC
request matches the source and terminal simultaneously. The
controller will send O(|V|?) FSC requests to each switch,
which is about |V| times of the number of FSC requests
(O(|V])) using wildcard based on the terminal. Moreover,
the switch needs to process more requests rapidly, which
will cause more control/switch overhead. It is clear that the
control/switch overhead increases as the number of fields a
wildcard matches increases. So a wildcard should not match
too many fields in our work.

Sixth, we discuss when to collect flow statistics. Flow
statistics are needed for applications such as traffic engineering
or security analytic, which runs periodically (e.g. 5 minutes
in [31]). So we can collect flow statistics at the minimum
operating frequency of these applications to support their
needed flow statistics.

IV. PERFORMANCE EVALUATION

In this section, we mainly give the simulation results and
the testing results to show the high efficiency of our proposed
algorithms.

A. Performance Metrics and Benchmarks

Given a per-switch (FSC traffic amount) cost constraint,
we expect to determine an FSC solution to cover more flows,
which benefit different applications, e.g., traffic engineering.
Thus, in our numerical evaluation, we use the following
metrics.

1) The number of covered flows. After determining the FSC
solution, the controller will send FSC requests to different
switches, and we can compute the number of covered
flows in a network.

2) Switchs CPU Utilization. When the switch receive the
FSC requests, it will reply the flow statistics. We will
test the CPU utilization of the switch at this time.

8

Compared with the state-of-the-art solutions and most-
related solutions, we validate the performance of the proposed
D-FSC and G-FSC algorithms by both simulations and proto-
type experiments. The first one, called per-flow, is adapted
from OpenTM [17], which is a per-flow FSC method. In
OpenTM, the statistic information of each flow is collected by
the controller from a switch along the route path randomly.
In our evaluation, for a flow, if the cost of the selected switch
exceeds its constraint, the statistic information of this flow will
not be collected. The second one is a random wildcard-based
method. Specifically, the controller will randomly choose
wildcard rules for FSC with the cost constraint, and send them
to this switch.

B. Simulation Evaluation

1) Simulation Setting: As running examples, two practical
and typical topologies are adopted in the simulation. one is
the campus network, and the other is the data center network.
We denote the first topology as (a), which is composed of 100
switches, 200 servers and 397 links from [32]. The second one
is the fat-tree topology [33], which has in total 80 switches
(i.e., 32 edge switches, 16 core switches, and 32 aggregation
switches) and 192 servers. Since the authors of [12] have
presented that, for the flow size, more than 80% of the top-
ranked flows may host less than 20% of the total traffic.
Therefore, the size for each flow is allocated according to
this guideline. The average active time of flows is 10 seconds
and the average flow rate is 1Mbps in the test. To measure
the FSC cost in the simulations, we adopt the same parameter
values as in Section II-C. That is, ¢; = 96 and ¢ = 218 with
unit byte. Each simulation is conducted 100 times, and we
take the average of the numerical results.

2) Simulation Results: To validate the effectiveness of
the presented FSC algorithms, two groups of simulations
are conducted. By default, we generate 120K flows in the
network. We study the different constraints, including FSC
traffic amount constraint and FSC delay constraint, on the
efficiency of FSC. Since the practical connection bandwidth
is tested to be less than 10Mbps [34] [35], the FSC traffic
amount constraint is by default set as 1Mbits (or 1Mb) for
each switch so that there is enough CPU resource for flow
scheduling and re-routing.

The first set of four simulations observes the percentage of
covered flows by altering the values of different parameters,
like the number of flows and the cost constraint threshold. Fig.
2 shows the number of covered flows by changing the number
of flows from 20K to 160K. We observe that, for a given
cost constraint (e.g., 1Mb), when there are more flows in the
network, the number of covered flows increases for all these
algorithms. Specifically, given 100K flows in the network, of
40.6%, 63.7%, 87.1% and 100% traffic statistics information
are collected by four algorithms, respectively, by the left plot
of Fig. 2. It means that, compared with the random method and
the per-flow FSC method, our proposed D-FSC algorithm can
improve the percentage of covered flows by at least 36.3% and
59.4%, respectively. When the FSC traffic amount constraint
on each switch obeys the Gaussian distribution with various
expected values, Fig. 3 shows that the number of covered

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

s g
() (]
[=2] j=
< <
[[
> >
o o N
Q 2 D-FSC -
3 3 GFs¢ g B-.q. a
w w andom > - - - -
20 | |per-flow -3 1 20 r|per-flow -} &l
e e I
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of Flows (X 104) Number of Flows (X 104)

Fig. 2: Flows Coverage (%) vs. Number of Flows with FSC Traffic
Cost Constraint under Uniform Distribution. Left plot: Topology (a);
right plot: Topology (b).

100

T T
D-FSC
S g KT
< < g0 R Random —>¢-
[[NpPer-flow -EF
=3 i=
o o N
g g
o o
(&)] B a
3 3 40
w w
. . . 20 . . N
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of Flows (X 104) Number of Flows (X 104)

Fig. 3: Flows Coverage (%) vs. Number of Flows with FSC Traffic
Cost Constraint under Gaussian Distribution. Left plot: Topology (a);
right plot: Topology (b).

.
N

*'S qg 12 s T
1] - Q
L G-FSC -
x 10 %X 10 I Random 3¢
e @ Per-flow -E+
3 8+ 4 3
) 1]
w i w
° 6 g o 6 4
o o o-- -
e 4t e S 4 BT
§ =1 o
5 2f -8 G-FSC -¢r | < 2 g
S} .8 Random % S ¥ 5
<] 1 Per-flow -[+ S M-
S 0 S 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Cost Constraint (X 100kb) Cost Constraint (X 100kb)

Fig. 4: Number of Covered Flows vs. FSC Traffic Cost Constraint
under Uniform Distribution. Left plot: Topology (a); right plot:
Topology (b).

i
N
T
=
1S}

=
o
T

No. of Covered Flows (X 104)

No. of Covered Flows (X 104)

.
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Expected Cost Constraint (X 100kb) Expected Cost Constraint (X 100kb)

Fig. 5: Number of Covered Flows vs. FSC Traffic Cost Constraint
under Gaussian Distribution. Left plot: Topology (a); right plot:
Topology (b).

flows also increases with more flows in the network. Given
100K flows in topology (a), 33.2K, 57.8K, 79.5K and 96.3K
traffic statistics information are collected by four algorithms,
respectively, by the left plot of Fig. 3. In other words, the D-
FSC algorithm can improve the number of covered flows by
about 39.9% and 65.5% compared with the random method
and the per-flow FSC method, respectively. Figs. 2 and 3 also
show that the increasing ratio for covered flows is much slower
with more flows in both topologies. Fig. 4 shows that the
number of covered flows increases almost linearly with the
traffic amount constraint for all algorithms while the constraint
is not large, e.g., less than 1Mb on topology (a). When it
exceeds 1Mb on topology (a), the number of covered flows by
the D-FSC algorithm remains almost unchanged (i.e., number
of all flows in the network). When the traffic constraint of

9

o« 5 , < 4 \
S 2783 - Ei

X 4t o X 3

2 < 3l

3 3

T 3 T

K g 2

& 2f S

8 § 1t

21 D-FSC-WD —o— |1 5 D-FSC-WD ——
s ¢ G-FSC-WD --© - s ¢ G-FSC-WD --© -
ES) 2

0 I
2 4 6 8 10 12 14 16 18 20
Delay Constraint (X 10ms)

P
2 4 6 8 10 12 14 16 18 20
Delay Constraint (X 10ms)

Fig. 6: Number of Covered Flows vs. Delay Constraint. Left plot:
Topology (a); right plot: Topology (b).

each switch obeys the Gaussian distribution, Fig. 5 shows the
similar performance as that in Fig. 4. Specifically, given a cost
constraint 1Mb on topology (a), four algorithms can collect
the statistics information of 31.1K, 59.7K, 82.4K and 94.3K
flows, respectively.

To respond to the fourth issue in Section III-C, the second
set of simulations shows that the number of covered flows
with both FSC traffic amount and delay cost constraints for
two proposed algorithms. For the delay of each FSC request,
we adopt the delay cost model as follows [8]: ¢/(II") = 0.19 -
|IT'| + 1.21 with unit ms, where II’ is the covered flow set by
this FSC request. In practice, the delay for each FSC request
may be dynamic. To express the struggle case, we update the
delay cost model as: ¢(II') = 6(0.19 - |TI'| + 1.21), where 9 is
a random constant from 1 to 2. We generate 80K flows in the
network and the FSC traffic amount constraint for each switch
is set as 500K bits. For clear description, D-FSC-WD and
G-FSC-WD denote the D-FSC and G-FSC algorithms with
delay constraint. The simulation results in Fig. 6 shows that
the number of covered flows by changing the delay constraint
from 20ms to 200ms. The number of covered flows increases
almost linearly with the delay constraint for both algorithms
while the delay constraint is not large, e.g., less than 160ms
on topology (a). When it exceeds 160ms on topology (a), the
number of covered flows by both D-FSC-WD and G-FSC-WD
remains almost unchanged.

From the simulation results in Figs. 2-6, three conclusions
can be drawn as follows. First, these simulation results show
that three wildcard-based FSC algorithms (i.e., D-FSC, G-FSC
and random) can achieve better FSC performance than the per-
flow method, which validates the advantage of the wildcard-
based scheme for FSC. Second, both the D-FSC and G-
FSC algorithms can cover more flows in comparison with the
random algorithm and the per-flow FSC method from Figs. 2-
5. Specifically, the D-FSC algorithm can increase the number
of covered flows by about 36.3% and 59.4% in comparison
with the random and per-flow FSC methods, respectively.
Third, though the approximation performance of G-FSC is
worse than that of the D-FSC algorithm, our simulation results
show that the performance of G-FSC is very close to that of
D-FSC. Especially on topology (b), two algorithms achieve
almost the similar performance on a structured topology, e.g.,
topology (b). Thus, we can conclude that both D-FSC/G-FSC
can achieve a satisfactory FSC performance.

C. Test-bed Evaluation

1) Implementation On the Platform: There are two options
to build our SDN platform. The first one is to use the

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

physical switches, e.g., H3C S5120-28SC-HI switches in our
lab. It should be noted that the present design of these
H3C switches only allow us to perform the flow statistics
collection using the per-flow and per-switch schemes. These
two schemes have been implemented through the RESTful
APIs. The Ryu controller has specified these APIs. We have
also tested the statistics collection using the per-flow and per-
switch schemes on our H3C S5120 switches. Unfortunately,
the wildcard-based flow statistics collection is not supported
by H3C S5120 switches presently, which are designed based
on the conventional switching fabric. The second is based
on the virtual switches. Compared with hardware switches,
the virtual switches, which are implemented by the software,
have all the three functions of FSC to collect flow statistics.
Thus, our experiments are conducted on the virtual switches.
Fortunately, many hardware vendors produce switches that
support OpenFlow wildcard-based statistics collection, such
as H3C h5560X-EI, Huawei S12700, and Pica8 AS4610-54T.
Therefore, our scheme can be used not only in the cloud
network composed of OVS, but also in the network composed
of hardware switches from different vendors.

Fig. 7: Topology of the SDN Platform. Our platform is main-
ly composed of three parts: a controller, seven OpenFlow en-
abled virtual switches {v1,v2,v3,v4, vs, 6, v7}, and five terminals
{u1,u27u3,u47uz,}.

In our platform, there are two main categories of devices.
One is the SDN controller. We use Ryu (version 4.13 [36]) as
the controller software, and choose a server equipped with a
Core i7-6700 processor and 8GB of RAM to run this controller
software. The other is the virtual switch, which is implemented
using the OVS 2.7.2 [37], running on a VMware with 1GB of
RAM. Fig. 7 shows the topology of our SDN platform. Seven
virtual switches, which are implemented by the OpenFlow
v1.3 standard, compose the data plane. Additionally, five ter-
minals are implemented on virtual machines. Three elements,
which are source IP, source port and destination IP, identify
a flow together. With the identified flows, each terminal can
produce different quantities of flows to others.

2) Testing results: We first measure the CPU utilization to
collect statistics from the OVS as we change the quantity of
covered flows. In this experiment, we generate 60,000 flows
through this switch. To acquire measurement results in the
idle state, which means no other load on each switch, we
configure the switch with the intention that its flow entries will
not be expired. After all terminals finish forwarding packets,
the controller waits for 10s to make sure that each switch is
idle. Then the controller pulls the traffic statistics from the

10

Maximum +

L|Average X
20 Minimum A
endency

2000

Random
1500 (| Per-flow \

15
1000

500

Switch CPU Usage (%)
3
Number of Covered Flows

q
A
N
Ny
\
N
Y
\
N
\
\
N

oM 0
0 5 10 15 20 25 30 35 40 45 50 55 60 15 2 25 3

Cost Constraint (X 100kb)

w
o b

Flow Table Size (X 1000)

Fig. 8: Switch’s CPU Utiliza- Fig. 9:
tion vs. Number of Covered Flows vs.
Flows in the Idle Status Constraint

Number of Covered
FSC Traffic Cost

switch using the different wildcard rules. From the results in
Fig. 8, we observe that the CPU utilization is almost linearly
increasing with the number of covered flows (or entries) on
the switch. Then, we fit these testing data to a straight line
as y = 0.0002762 - x + 1.0692 using the linear least square
method, where y and x denote the CPU utilization and the
number of covered flows, respectively. Specifically, when we
collect the statistics information of 30,000 and 60,000 flows
from the OVS, the CPU utilization is about 9.3% and 18.0%,
respectively. Using this fitting function, the CPU utilization
for 30,000 and 60,000 flows are 9.4% and 17.6%, respectively.
The difference between the estimated utilization and the real
utilization is not more than 3%. We should note that two
constant parameters ¢; and co will change with the hardware
configuration for OVS.

In the second experiment, when 2000 flows are generated
in the network, we observe the number of covered flows by
changing the FSC traffic amount constraints for different FSC
algorithms. In the experiment, each source-destination pair
generates the identical number of flows (i.e., 100 flows), and
the controller chooses a path randomly for each flow. Since
the switch’s CPU utilization is difficult to be controlled, it
may lead to inaccurate testing results under busy status. Thus,
our experiments are for the switch’s idle state. Fig. 9 shows
that all algorithms can collect statistics information of more
flows with the increase of FSC traffic amount constraints.
Moreover, D-FSC and G-FSC perform better than the per-flow
and random approaches. For example, given an FSC traffic
constraint of 200kb, four algorithms can cover 567, 927, 1283,
and 1343 flows, respectively. That is to say, D-FSC and G-FSC
can improve the number of covered flows by about 44.9% and
38.4% compared with the random method, respectively.

V. RELATED WORKS

In an SDN, using the counter field of the flow entry, the
switches can count the traffic of each flow. Then, the controller
should know the results of the traffic measurement [38]. There
are two different ways, specified in OpenFlow [10], to perform
flow statistics collection. One is push-based, the other is pull-
based.

We first introduce the push-based flow statistics collection.
When a new flow arrives at a switch and the flow entry is
expired, the switch will send the Packet_in and FlowRemoved
messages to the controller, respectively. Using these two
kinds of messages, FlowSense [11] implemented the push-
based collection. Devoflow [12] implemented a new push-
based statistics collection through extending OpenFlow. It can

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

Transactions on Communications

identify the elephant flows, and then forward these flows
through a new route path. It should be noted that the push-
based collection needed additional hardware on switches, or
modified the packet head (such as sFlow [39]) to support
this function. In fact, since most commodity switches do not
completely support these requirements, it limits the application
of push-based collection.

Then we introduce the pull-based FSC. It is uncomplicated
and many SDN applications support it. There are three dif-
ferent schemes for FSC. The first one is the per-flow FSC.
Through simple logic, OpenTM [17] queried the flow table
counters using traffic matrix estimation. The authors [15]
devised an adaptive fetching scheme. In this scheme, the data
was pulled from switches to the controllers, and the rate of
queries changed according to the flow rates. PayLess [40]
traded off the accuracy and network overhead for FSC. To col-
lect flow statistics, it designed a flexible RESTful API, which
could be used at different aggregation levels. The second
one is the per-switch FSC. Both FlowCover [13] and CeMon
[16] presented per-switch monitoring schemes with low cost.
Various network management tasks were supported in these
per-switch monitoring schemes. The statistics information of
all the flows were collected by the controller, when FSC was
triggered. The authors [8] have shown that both the per-flow
and per-switch FSC schemes caused the serious cost of each
switch, and prevented the packet forwarding. Unfortunately,
some applications, like flow re-routing [12], demanded that
the FSC should be performed frequently enough when using
the pull-based scheme. The third one is the wildcard-based
FSC. Xu et al. [8] proposed a cost-optimized FSC mechanism,
which supported wildcard-based requests [41], and presented
a rounding-based algorithm for this problem. However, this
work does not take the switch’s computing resource constraint
into accounts, and may result in higher switch cost, which will
seriously interfere with the switch’s basic functions.

VI. CONCLUSION

In this paper, we studied how to perform FSC with less
interference with the switch’s basic functions. We proposed
the CP-FSC problem. Then, to solve this problem, two ap-
proximation algorithms were designed, and are implemented
on our SDN platform. The extensive simulation results show
the high efficiency of our proposed algorithms. In the future,
we will study how to determine the feasible value of cost
constraint for more design choices of efficient FSC.

ACKNOWLEDGMENT

Hongli Xu and Gongming Zhao are corresponding au-
thors. This paper is supported by the NSFC under Grant
No. 61472383, U1301256, and 61472385, and the Natural
Science Foundation of Jiangsu Province in China under No.
BK20161257, and the Fundamental Research Funds for the
Central Universities under No. WK5290000001. The work of
Qian is supported by the NSF under grant CNS-1701681.

REFERENCES

[1] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211-2219.

11

[2] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “Ddos attack protection in
the era of cloud computing and software-defined networking,” Computer
Networks, vol. 81, pp. 308-319, 2015.

[3] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud computing
environments: A survey, some research issues, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 602-622, 2016.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM, 2013, pp. 15-26.

[51 Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff, “Sampling
and large flow detection in sdn,” in ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 4. ACM, 2015, pp. 345-346.

[6] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Scream: Sketch
resource allocation for software-defined measurement,” CoNEXT, Hei-
delberg, Germany, 2015.

[71 J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample:
A low-latency, sampling-based measurement platform for commodity
sdn,” in 34th ICDCS. 1IEEE, 2014, pp. 228-237.

[8] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and Z. Liu, “Minimizing flow statistics
collection cost of sdn using wildcard requests,” in /[EEE INFOCOM,
2017, pp. 1-9.

[9] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” in the 10th USENIX Symposium on Networked Systems
Design and Implementation, 2013, pp. 29-42.

[10] B. Pfaff er al., “Openflow switch specification v1.3.0,” 2012.

[11] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “Flowsense: Monitoring network utilization with zero
measurement cost,” in Passive and Active Measurement. Springer,
2013, pp. 31-41.

[12] A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in ACM SIGCOMM, vol. 41, no. 4, 2011, pp. 254-265.

[13] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost flow
monitoring scheme in software defined networks,” in Global Communi-
cations Conference (GLOBECOM). 1EEE, 2014, pp. 1956-1961.

[14] M. Aslan and A. Matrawy, “On the impact of network state collection
on the performance of sdn applications,” IEEE Communications Letters,
vol. 20, no. 1, pp. 5-8, 2016.

[15] N. L. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Net-
work monitoring in openflow software-defined networks,” in Network
Operations and Management Symposium. 1EEE, 2014, pp. 1-8.

[16] S. Zhiyang, T. Wang, Y. Xia, and M. Hamdi, “Cemon: A cost-effective
flow monitoring system in software defined networks,” Computer
Networks, vol. 92, pp. 101-115, 2015.

[17] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix
estimator for openflow networks,” in International Conference on Pas-
sive and Active Network Measurement. Springer, 2010, pp. 201-210.

[18] K. Kannan and S. Banerjee, “Compact tcam: Flow entry compaction in
tcam for power aware sdn,” in International Conference on Distributed
Computing and Networking. Springer, 2013, pp. 439-444.

[19] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 267-280.

[20] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch:
Elastically scaling up sdn control-plane using vswitch based overlay,”
in ACM CoNEXT. ACM, 2014, pp. 403-414.

[21] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment
in data center networks: Stable matching with transfers,” in Proc. of
INFOCOM, 2016.

[22] “The openflow switch,” openflowswitch.org.

[23] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “csamp: A system for network-wide flow monitoring.”
in NSDI, vol. 8, 2008, pp. 233-246.

[24] G. P. Ingargiola and J. F. Korsh, “Reduction algorithm for zero-one
single knapsack problems,” Management science, vol. 20, no. 4-part-i,
pp. 460463, 1973.

[25] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Information Processing Letters, vol. 70, no. 1, pp. 39-45,
1999.

[26] C. Chekuri and A. Kumar, “Maximum coverage problem with group
budget constraints and applications,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques. Springer,
2004, pp. 72-83.

[27] K. Lai and M. Goemans, “The knapsack problem and fully polynomial
time approximation schemes (fptas),” Retrieved November, vol. 3, p.
2012, 2006.

[28] A. Gupta, “Approximations algorithms,” 2005.

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3078296, IEEE

[29]

[30]

[31]

(32]

(33]

(34]

[35]

[36]
(371
[38]

[39]

[40]

[41]

Transactions on Communications

R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan,
and S. A. Khayam, “Macroflows and microflows: Enabling rapid net-
work innovation through a split sdn data plane,” in Software Defined
Networking (EWSDN), 2012 European Workshop on. 1EEE, 2012, pp.
79-84.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 281-296.

J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjgrner, A. Valadarsky,
and M. Schapira, “Teavar: striking the right utilization-availability
balance in wan traffic engineering,” in Proceedings of the ACM Special
Interest Group on Data Communication. ACM, 2019, pp. 29-43.
“The network topology from the monash university,”
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/
LargePacket-switchingNetworkTopologies.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63-74.

H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in Dependable Systems and
Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference
on. IEEE, 2015, pp. 239-250.

G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “Flooddefender: pro-
tecting data and control plane resources under sdn-aimed dos attacks,”
in INFOCOM 2017-1EEE Conference on Computer Communications,
IEEE. 1EEE, 2017, pp. 1-9.

S. Ryu, “Framework community: Ryu sdn controller,” 2016.

“Open vswitch,” http://openvswitch.org/.

S. Bera, S. Misra, and A. Jamalipour, “Flowstat: Adaptive flow-rule
placement for per-flow statistics in sdn,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 3, pp. 530-539, 2019.

P. Phaal and M. Lavine, “sflow version 5, URL: http://www. sflow.
org/sflow_version_5. txt, J uli, 2004.

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in 2014 IEEE Network Operations and Management Symposium (NOM-
S). IEEE, 2014, pp. 1-9.

S. Shirali-Shahreza and Y. Ganjali, “Rewiflow: Restricted wildcard
openflow rules,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 5, pp. 29-35, 2015.

Xuwei Yang received B.S. degree in network engi-
neering from the Changan University in 2016. He
is currently a doctor-candidate student in Computer
Science at the University of Science and Technology
of China. He will receive the doctor degree in
2021. His main research interest is software defined
networks, network function virtualization and data
center network.

Hongli Xu received the B.S. degree in computer
science from the University of Science and Tech-
nology of China, China, in 2002, and the Ph.D.
degree in computer software and theory from the
University of Science and Technology of China,
China, in 2007. He is a professor with the School
of Computer Science and Technology, University of
Science and Technology of China (USTC), China.
He was awarded the Outstanding Youth Science
Foundation of NSFC, in 2018. He has won the
best paper award or the best paper candidate in

several famous conferences. He has published more than 100 papers in
famous journals and conferences, including the IEEE/ACM Transactions on
Networking, IEEE Transactions on Mobile Computing, IEEE Transactions on
Parallel and Distributed Systems, INFOCOM and ICNP, etc. He has also held
more than 30 patents. His main research interest is software defined networks,
edge computing and Internet of Thing.

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12

Xiwen Yu received the B.S. degree in information
security from the University of Science and Tech-
nology of China in 2015, and the M.S. degree in
computer science from the University of Science
and Technology of China in 2018. His main research
interest is software-defined networks.

Chen Qian received the B.S. degree from Nanjing
University in 2006, the M.Phil. degree from The
Hong Kong University of Science and Technology
in 2008, and the Ph.D. degree from The University
of Texas at Austin in 2013, all in computer science.
He is currently an Assistant Professor with the
Department of Computer Engineering, University
of California at Santa Cruz. His research interests
include computer networking, network security, and
the Internet of Things. He has authored more than 60
research articles in highly competitive conferences

and journals. He is a member of the ACM.

Gongming Zhao received the Ph.D. degree in com-
puter software and theory from the University of
Science and Technology of China in 2020. He is
now an associate professor in University of Science
and Technology of China. His current research in-
terests include software-defined networks and cloud
computing.

He Huang is an associate professor in the School
of Computer Science and Technology at Soochow
University, P.R. China. He received his Ph.D. degree
in Department of Computer Science and Technology
from University of Science and Technology of China
(USTC), in 2011. His current research interests in-
clude traffic measurement, spectrum auction, privacy
preserving in auction, and algorithmic game theory.
He is a Member of both IEEE and ACM.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 08,2021 at 13:53:26 UTC from IEEE Xplore. Restrictions apply.

